目录
Hive行转列
1)相关函数说明
CONCAT(string A/col, string B/col…):返回输入字符串连接后的结果,支持任意个输入字符串;
CONCAT_WS(separator, str1, str2,…):它是一个特殊形式的 CONCAT()。第一个参数剩余参数间的分隔符。分隔符可以是与剩余参数一样的字符串。如果分隔符是 NULL,返回值也将为 NULL。这个函数会跳过分隔符参数后的任何 NULL 和空字符串。分隔符将被加到被连接的字符串之间;
注意:CONCAT_WS must be “string or array<string>
COLLECT_SET(col):函数只接受基本数据类型,它的主要作用是将某字段的值进行去重汇总,产生array类型字段。
2)数据准备
name | constellation | blood_type |
孙悟空 | 白羊座 | A |
大海 | 射手座 | A |
宋宋 | 白羊座 | B |
猪八戒 | 白羊座 | A |
凤姐 | 射手座 | A |
小红 | 白羊座 | B |
3)需求
把星座和血型一样的人归类到一起。结果如下:
射手座,A 大海|凤姐
白羊座,A 孙悟空|猪八戒
白羊座,B 宋宋|小红
4)创建hive表并导入数据
create table person_info(
name string,
constellation string,
blood_type string)
row format delimited fields terminated by "\t";
load data local inpath "/home/hadoop/data/person_info.txt" into table person_info;
5)按需求查询数据
SELECT t1.c_b , CONCAT_WS("|",collect_set(t1.name))
FROM (
SELECT NAME ,CONCAT_WS(',',constellation,blood_type) c_b
FROM person_info
)t1
GROUP BY t1.c_b;

列转行
1)函数说明
EXPLODE(col):将hive一列中复杂的array或者map结构拆分成多行。
LATERAL VIEW
用法:LATERAL VIEW udtf(expression) tableAlias AS columnAlias
解释:用于和split, explode等UDTF一起使用,它能够将一列数据拆成多行数据,在此基础上可以对拆分后的数据进行聚合。
2)数据准备
movie | category |
《疑犯追踪》 | 悬疑,动作,科幻,剧情 |
《Lie to me》 | 悬疑,警匪,动作,心理,剧情 |
《战狼2》 | 战争,动作,灾难 |
3)需求
将电影分类中的数组数据展开。结果如下:
《疑犯追踪》 悬疑
《疑犯追踪》 动作
《疑犯追踪》 科幻
《疑犯追踪》 剧情
《Lie to me》 悬疑
《Lie to me》 警匪
《Lie to me》 动作
《Lie to me》 心理
《Lie to me》 剧情
《战狼2》 战争
《战狼2》 动作
《战狼2》 灾难
4)创建hive表并导入数据
create table movie_info(
movie string,
category string)
row format delimited fields terminated by "\t";
load data local inpath "/home/hadoop/data/movie_info.txt" into table movie_info;
6)按需求查询数据
SELECT movie,category_name
FROM movie_info
lateral VIEW
explode(split(category,",")) movie_info_tmp AS category_name ;
