K最近邻分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:在特征空间中,如果一个样本附近的k个最近(即特征空间中最邻近)样本的大多数属于某一个类别,则该样本也属于这个类别。
K-近邻算法概述
简单地说,k-近邻算法采用测量不同特征值之间的距离方法进行分类。
算法特性
- 优点:精度高、对异常值不敏感、无数据输入假定。
- 缺点:计算复杂度高、空间复杂度高。
- 适用数据范围:数值型和标称型。
工作原理
存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每-数据与所属分类的对应关系。输人没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。一-般来说, 我们只选择样本数据集中前k个最相似的数据,这就是k近邻算法中k的出处,通常k是不大于20的整数。最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。
k-近邻算法的一般流程
- 收集数据:可以使用任何方法。
- 准备数据:距离计算所需要的数值,最好是结构化的數据格式。
- 分析数据:可以使用任何方法。
- 训练算法:此步骤不适用于k-近邻算法。
- 测试算法:计算错误率。
- 使用算法:首先需要输入样本数据和结构化的输出结果,然后运行k近邻算法判定输入数据分别属于哪个分类,最后应用对计算出的分类执行后续的处理。
实施kNN分类算法
这里首先给出k-近邻算法的伪代码和实际的Python代码,然后详细地解释每行代码的含义。该函数的功能是使用k-近邻算法将每组数据划分到某个类中。
伪代码如下:
对未知类别属性的数据集中的每个点依次执行以下操作:
- 计算已知类别数据集中的点与当前点之间的距离;
- 按照距离递增次序排序;
- 选取与当前点距离最小的k个点;
- 确定前k个点所在类别的出现频率;
- 返回前k个点出现频率最高的类别作为当前点的预测分类。
# KNN算法实现分类
def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = dataSet - inX
sqdiffMat = diffMat**2
sqDistances = sqdiffMat.sum(axis=1)
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort()
classCount = {}
for i in range(k):
voteIlable = labels[sortedDistIndicies[i]]
classCount[voteIlable] = classCount.get(voteIlable, 0)+1
sortedClassCount = sorted(classCount.items(),
key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
classify0()函数有4个输入参数:用于分类的输人向量是inX,输人的训练样本集为dataSet,标签向量为labels,最后的参数k表示用于选择最近邻居的数目,其中标签向量的元素数目和矩阵ataSet的行数相同。使用欧氏距离公式,计算两个向量点xd和xB之间的距离
d=√(xA0 -xB0)^2 +(xA1 -xB1)^2
例如,点(0, 0)与(1, 2)之间的距离计算为:
√(1-0)^2+(2-0)^2
如果数据集存在4个特征值,则点(,0.0, 1507.6.4之间的距离计算为:
√(7-1)^2+(6-0)^2+(9-0)^2+(4-1)^2
计算完所有点之间的距离后,可以对数据按照从小到大的次序排序。然后,确定前k个距离最小元素所在的主要分类。输人k总是正整数;最后,将classCount字典分解为元组列表,然后使用程序第二行导人运算符模块的itemgetter方法,按照第二个元素的次序对元组进行排序。此处的排序为逆序,即按照从最大到最小次序排序,最后返回发生频率最高的元素标签。
如何测试分类器
上文我们已经使用k近邻算法构造了第一个分类器 ,也可以检验分类器给出的答案是否符合我们的预期。读者可能会问:“分类器何种情况下会出错?”或者“答案是否总是正确的?”答案是否定的,分类器并不会得到百分百正确的结果,我们可以使用多种方法检测分类器的正确率。此外分类器的性能也会受到多种因素的影响,如分类器设置和数据集等。不同的算法在不同数据集上的表现可能完全不同。
为了测试分类器的效果,我们可以使用已知答案的数据,当然答案不能告诉分类器,检验分类器给出的结果是否符合预期结果。通过大量的测试数据,我们可以得到分类器的错误率——分类器给出错误结果的次数除以测试执行的总数。错误率是常用的评估方法,主要用于评估分类器在某个数据集上的执行效果。完美分类器的错误率为0,最差分类器的错误率是1.0,在这种情况下,分类器根本就无法找到一个正确答案。